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The periodic motion of a fluid in a tube of finite length and circular cross-section is considered. The 

tube has a unit at one end which changes the fluid flow rate. This unit is separated from the tube by a 

chamber which serves to control the flow rate and to dampen pressure oscillations. The problem of 

under what conditions such periodic motions are possible and what is their form and dependence on 

the period and durations of the first and second stages of the oscillation of the parameters determining 

the motion is considered. 

THE THREE problems of the unsteady motion of a fiuid (including periodic motion) in a system of the 
above type have been solved previously [l] using propositions developed by Charnyi [2]. In this case, the 

boundary conditions for all these problems were such that each periodic oscillation consists of two parts 
with durations T, and T, = T -T,, where T is the period of the motion. Depending on which equation, the 
wave equation, the telegraph equation or the heat conduction equation, describes the motion, the three 
problems are referred to in [l] as the first, second and third problem, respectively. 
The periodic solutions of these three problems are considered in greater detail below. 

1. Let U(z, 2) be the mean velocity of the fluid in the tube, z the coordinate along the axis of the tube, 
and ‘t the time (all of these quantities are dimensionless). 

The first and second problems reduce to solving the wave (v = 0) and telegraph (v > 0) equations 

a2u.+2v au a2u 
2 x=z 

respectively, in the domain 0 < z c 1 with the boundary conditions 

awl,%) f%!$&, b--_ az +(l(l,~)=Q[U(l,~).d 

and without initial conditions. 
Here, Q ( U, 5) is either a specified periodic function of ‘5 of the form 

0.1) 

(1.2) 

(1.3) 

or this dependence on U is of the relay type 

tPrikl. Mat. Mekh. Vol. 57. No. 5, pp. 185-190, 1993. 

947 



N. N. KOCHINA 

(1.4) 

Moreover, V. > U, so that there is a segment of non-uniqueness U., < U < U,. 
The quantities Qi, (2,, T,, T, U., U,. are specified constant numbers. We assume that Qi > Q,, 

U, a U,, q is the duration of the first stage of the periodic motion and that T = T, + T, is the period of the 
motion (T2 is the duration of the second stage of the oscillation). The dimensionless parameters VSO 

and b 30 also occur in the conditions of the problem: v depends on the flow conditions and the 
properties of the tube while b characterizes the type of chamber. When there is no chamber, b = 0 [l]. 

The third problem reduces to finding the solution of the heat conduction equation 

2vav_a2v n 
a7 az2 “2 c 1 (1.5) 

in the domain 0 e z e 1 without initial conditions but with boundary conditions (1.2), where Q [U(l, z), r] 
is again determined either by formula (1.3) or (1.4). 

Hence, three problems have been formulated in dimensionless variables, and the solution of each of 
these depends on the variables z and z and on the dimensionless parameters b, v, Q,, Q,, T, and T if 

condition (1.3) is satisfied and b, v, Ql, Q2, U., U, if (1.4) holds. 
The second of conditions (1.2) (in the case of the unit when z = 1) is obtained from the balance of the 

flow rates of the fluid into and out of the chamber [2]. It is clear that, if b=O, relationship (1.4) has no 

meaning. As will be shown below, the equality U. = U, is always satisfied in the case of the first problem 
as a consequence of which (1.4) also has no meaning for this problem. Consequently, condition (1.4) can 

only hold in the case of the second and third. problems when there is a chamber present (v > 0, b > 0). 

After these remarks, we will initially dwell on the solution of the three problems with 
condition (1.2). (1.3) and write out the solution of the second problem, that is, (l.l)-(1.3) 

the periodic 

(1.6) 

Henceforth summation with respect to k is carried out from 0 to m, and uk (k = 1, 2, . . .) are the 

successive positive roots of the equation 

ctgu=bu (1.7) 

w, =d(u2,-3) (if u* c v, then, in (1.6), coso,x and sinw,x are, respectively, replaced by cha,x and 
sho,x, where Q, = d(v” -pi); if p, = v, the corresponding terms of the sums in (1.6) a replaced by 

C,, +Czb~ and Dlk + Dzr(%- T,)). 
Under the assumption that v < ul, the constants C,, Da (k = 1.2, . . .) are defined by the formulae 

‘jk - AC(T) 
-A(-E,jk +a&(Tz)exp(-vT2)+ 

+a$T)exp(-vT)-a$Tl)exp(-v(T+T2)]) (j=1,2) 

Dlk = a& +exp(-vTl )(C~~coso,T, +C,, sinotT,) 



On the periodic solutions of one-dimensional unsteady motion of a fluid in a tube 949 

bk =2sin~~ /pk (b=O) 

The coefficients C,, Dji (j= 1, 2) for the first problem are obtained from (1.8) by passing to the liiit 
as v --B 0 and have been written out in [l]. 

The solution of the third problem, that is, problem (1.5), (1.2) and (1.3) has the form 

(1.9) 

Here the notation of (1.6)-(1.8) has also been used. 
It is clear from (1.6)-(1.9) that the series occurring in formulae (1.6) and (1.9) only converge if 

the period T (for the first problem) is such that there is no resonance, that is, T # 2nmlp, (m, s = 1, 2,. . _) 
PI* 

Hence, under this assumption, the three problems mentioned above have a solution which is reason- 

able by virtue of their linearity. 
Let us now consider the solution of the second and third problems with a boundary condition of the 

relay type, that is, problems (l.l), (1.2), (1.4) and (1.5). (1.2), (1.4), where v= 0, b> 0. 
It can be seen that the solution of these problems is described by the same formulae (1.6)-(1.9) where 

q and T, = T-I; are a priori unknown and are defied as the least roots of the equations [l] 

4(1* I=i)=cl*,ll*(l, T,+T*)=&, (1.10) 

Let us now introduce the functions Q(T;, Ta, v, b) and Y(T,, T2, v, b) according to the formulae 

~=QrWlJi)__Q,-~. 
QI -Qz Ql -Qz 

\y= u2(L TI +T2bQz _ u.. 42 
(1.11) 

QI-Q2 Qi-Qz 

Using (La), (1.9) and (X11), let us write out the expressions of the function 9 for the second and thiid 

problems, respectively 

B=exp(-v7i)x2 ia:k(Tl)-eXp(-VT2)Ufk(T)- 

- exP(-vT)a,(T2 I+ exp[-v(T + T,)]) (1.12) 
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(Bk =bkcospk) 

,=.pkPkWk) 
1 - PkXk 

(1.13) 

We will now consider formulae (1.12) and (1.13) simultaneously. 
On writing out the analogous formulae for Y(Z’,, T,, v, b) it can be shown that 

Y(7i,T~,V,b)=~(T2,T~.V,b) (1.14) 

It therefore suffices to confine ourselves to the treatment of the function 0 in the domain TI 2 0, c B 0. 
At the point TI = T, = 0, the function @(T,, T,) is undefined and it is not continuous at this point. In 

this case 

(1.15) 

Next, it is clear that 0(0, &) = 1, @((T,, 0) = 0. 
On introducing the notation 

we obtain the relations 

(1.16) 

(1.17) 

for the third and second problems, respectively. 
It follows from (1.16) and (1.17) that h(0) = 1, limh(Z’J = 0 as T, + =, 
Let us now consider the third problem. It follows from (1.16) that the inequality 0 < h(T,) < 1, h’(q) c 0 

is satisfied for all q > 0. It is clear from (1.13) that, for each value O< C < 1 such that @(T,, T,)= C, 
T;(T,) 2 0 and, when T, + Q), each of the curves h(T,) has a vertical asymptote TI = h-‘(C). 

The general form of the families of curves @(T,, q) = C (the solid lines) and Y(T,, &) = C (the dashed 

lines) are shown in Fig. 1 for certain values of the parameter C. The points of intersection of these curves, 

TI and T2, correspond to the required roots of Eqs (1.10) and, moreover, to the unique roots. It can be 
shown that the inequalities O<@<l, O<Y <l, O<@+Y cl are satisfied when T, >O, T, ~-0. The 

equivalence of the solutions of the third problem with the periodic condition (1.3) and the relay type 
condition (1.4) follows from this. In addition, it can be seen that, in this case, a periodic solution only 

exists when 

QcU..<U.CQI (1.18) 

Let us now consider the solution of the second problem. It is clear that, close to the origin of 
coordinates and to the coordinate axes, the behaviour of the curves 0 and Y in the (T,, T,)-plane is 
completely analogous to that shown in Fig. 1. In particular, as in the case of the third problem, if 
a+ Y = 1 (U.. = U,) or @+ Y > 1 (U,, > U.), which contradicts the assumed condition U. > U.., then the 

corresponding curves 0 = C, and Y = C, only intersect at the point q = T, = 0. 
If h’(T,)<O for all q >O, where the quantity It(q) is given by formula (1.17), the behaviour of the 0 

and Y curves are the same as those shown in Fig. 1, and the conclusions drawn above again hold. 
Let there be a segment (segments) of values of TI for which h’(T,) > 0. The typical form of the curves 

@=C and Y =C and their points of intersection are shown in Fig. 2; the one-to-one correspondence 
between the pairs (9, Y) (and, consequently, (u., VW)) and (T,, T2) breaks down in this case. For 
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example, when 0 = 0.4 and Y = 0.2 in our figure, there are two points of intersection while, when solving 

the problem with a relay type condition (1.4), it is necessary to take the point with the least values of Tl 
and T,. 

Hence, if 0 and Y are single-valued functions of q and G when T, > 0, then T, and T, are multivalued 
functions of @ and Y in the case when there are ranges of values of q for which h’(T,) > 0. 

If there are also ranges of values of T, for which k(T,) c 0, then inequalities (1.18) are not satisfied. 

2. We will now present two examples which relate to the second problem. 
Let the parameter b be large. It then follows from Eq. (1.17) that u: =1/b-1/36’, u, =lr(k-1) 

(k = 2, 3, . . .). By virtue of (1.8) and (1.2), formula (1.17) yields 

1. Let v-+,, then w, = ul, and from Eq. (2.1) 

(2.1) 

(y(T,) is a periodic function with period 2). It is clear that there are ranges of Tl for which g’(t,) > 0, 
g(T,) c 0 and the curves 0 = const and Y = const are arranged roughly in the same manner as in Fig. 2. 

2. Let v =pr. In this case, as was noted above, the fist term of the series in formula (1.6) is replaced by 

the term C,, +C,s, and 

C,, =~(-l+(l+vT,)ex~(-vT,)+(l-vT)exp(-vT)-(l-vT~)exd-v(T+T~)]), (2.3) 

&I = yt-l+exP(-vT,)+exp(-vT)-exp[-v(T+Tz)]) (At = [l-exp(-VT)]*) 
1 

Assuming once again that the parameter b is large, we obtain from (1.17) and (2.3) (y(T,) is a periodic 
function with period 2) 

(yJT,)=T,(T,*/3+ +2/3) (OsT, ~2)) 

FIO. 1. 

s=o, fb” 

FIG. 2. 
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In this case, g(T,)> 0, h’(T,)< 0, and the picture of the distribution of the curves @= const and 

Y = const in the (T,, &)-plane is analogous to the picture for the third problem (Fig. 1). 

Let us now turn to the periodic condition (1.2), (1.3). It is seen from Fig. 2 that, in the case of the 

second problem, the parameters Tr and T2 can also be specified in such a way that they will be the roots of 

Eq. (1.10) but not the least ones. 

FIG. 3. FIO .4. 

Passing to the limit as v + 0 in formula (1.12), we can show that the equality a+ Y = 1, always holds in 

the case of the first problem, and it follows from this that U.. = U. and the relay type condition (1.4) is 
meaningless. 

In concluding, we will show, on the basis of what has been described, what is the form of the 

oscillations for each of the three problems. 
The approximate form of the periodic function U(1, r), that is, of the mean velocity close to the unit, is 

shown in Figs 3 and 4 for each of the three problems: the solid line in Fig. 3 is the solution of the heat 
conduction equation (1.9) and the dashed line is the solution of the telegraph equation (1.6)-(1.8). The 
curve U(1, z) for the wave equation (1.6)-(1.8) (v = 0) is shown in Fig. 4. 
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